后门攻击是对深度学习模型的强大攻击算法。最近,GNN对后门攻击的脆弱性已被证明,尤其是在图形分类任务上。在本文中,我们提出了GNN上的第一种后门检测和防御方法。大多数后门攻击都取决于向干净样品注入小但有影响力的扳机。对于图数据,当前的后门攻击专注于操纵图形结构以注入触发器。我们发现,良性样本和恶意样本之间存在明显的差异,例如忠诚度和不忠行为。在确定了恶意样本后,GNN模型的解释性可以帮助我们捕获最重要的子图,这可能是Trojan图中的触发器。我们使用各种数据集和不同的攻击设置来证明我们的防御方法的有效性。攻击成功率的所有事实都大大降低。
translated by 谷歌翻译
本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
我们在本文中解决了广义类别发现(GCD)的问题,即从一组可见的类中利用信息的未标记的图像,其中未标记的图像可以包含可见的类和看不见的类。可以将所见类看作是类的隐式标准,这使得此设置不同于无监督的聚类,而集群标准可能模棱两可。我们主要关注在细粒数据集中发现类别的问题,因为它是类别发现的最直接应用程序之一,即帮助专家使用所见类规定的隐性标准在未标记的数据集中发现新颖概念。通用类别发现的最新方法杠杆对比度学习以学习表示形式,但是较大的类间相似性和阶层内差异对方法提出了挑战,因为负面示例可能包含无关的线索,以识别类别因此,算法可能会收敛到局部微米。我们提出了一种名为“专家对抗性学习(XCON)”的新颖方法,可以通过将数据集使用K-均值聚类将数据集划分为子数据库,然后对每个子数据集进行对比度学习,从而帮助模型从图像中挖掘有用的信息。学习细粒度的判别特征。在细粒度数据集上的实验表明,与以前的最佳方法相比,性能明显改善,表明我们方法的有效性。
translated by 谷歌翻译
这项工作同时考虑了典型的监督学习任务中深度表示的可区分性和可传递性属性,即图像分类。通过全面的时间分析,我们观察到这两个属性之间的权衡。随着培训的进展,可区分性不断提高,而转移性在后来的培训期间大大降低。从信息 - 底层理论的角度来看,我们揭示了可区分性和可传递性之间的不相容性归因于输入信息的过度压缩。更重要的是,我们研究了为什么和为什么如何减轻过度压缩的信息,并进一步提出一个学习框架,称为对比度的时间编码〜(CTC),以抵消过度压缩并减轻不相容性。广泛的实验验证了CTC成功缓解了不相容性,从而产生了歧视性和可转移表示形式。在图像分类任务和挑战转移学习任务上实现了明显的改进。我们希望这项工作将提高传统监督学习环境中可转移性属性的重要性。代码可从https://github.com/dtennant/dt-tradeoff获得。
translated by 谷歌翻译
迄今为止,纳米级的活细胞成像仍然具有挑战性。尽管超分辨率显微镜方法使得能够在光学分辨率下方的亚细胞结构的可视化,但空间分辨率仍然足够远,对于体内生物分子的结构重建仍然足够远(即24nm厚度的微管纤维)。在这项研究中,我们提出了一种A-Net网络,并显示通过基于劣化模型的DWDC算法组合A-Net DeeD学习网络,可以显着改善由共聚焦显微镜捕获的细胞骨架图像的分辨率。利用DWDC算法构建新数据集并利用A-Net神经网络的特征(即,层数较少),我们成功地消除了噪声和絮凝结构,最初干扰了原始图像中的蜂窝结构,并改善了空间分辨率使用相对较小的数据集10次。因此,我们得出结论,将A-Net神经网络与DWDC方法结合的所提出的算法是一种合适的和普遍的方法,用于从低分辨率图像中严格的生物分子,细胞和器官的结构细节。
translated by 谷歌翻译
增强了现实世界情景的稳健性已经被证明非常具有挑战性。一个原因是现有的鲁棒性基准是有限的,因为它们依赖于合成数据,或者它们只是将稳健性降低为数据集之间的概括,因此忽略各个滋扰因素的影响。在这项工作中,我们介绍了罗宾,是一个基准数据集,用于诊断视觉算法对现实世界中的个人滋扰的鲁棒性。罗宾在Pascal VOC 2012和Imagenet数据集中构建了10个刚性类别,并包括对象的分布示例3D姿势,形状,纹理,背景和天气状况。 Robin是丰富的注释,以实现图像分类,对象检测和3D姿势估计的基准模型。我们为许多流行的基线提供了结果,并进行了几个有趣的观察结果:1。与其他人相比,一些滋扰因素对性能有更强烈的负面影响。此外,对oodnuisance的负面影响取决于下游视觉任务。 2.利用强大数据增强的鲁棒性的目前的方法只有在现实世界的情况下只有边际效应,有时甚至会降低表现。 3.我们在鲁棒性方面,我们不会遵守卷积和变压器架构之间的任何显着差异。我们相信我们的数据集提供了丰富的试验台,以研究视觉算法的稳健性,并有助于大大推动该领域的前瞻性研究。
translated by 谷歌翻译
在本文中,我们通过利用包含来自其他不同但相关类别的图像的标记数据集将来自新类的未标记的图像与新类别分组从新类别分组到不同的语义分区的问题。这是一个比传统的半监督学习更现实和具有挑战性的。我们为这个问题提出了一个双分支学习框架,一个分支专注于本地部分级信息和专注于整体特征的另一个分支。将知识从标记的数据传输到未标记的,我们建议使用两个分支机构的双重排名统计信息来生成伪标签,用于培训未标记的数据。我们进一步介绍了一个相互知识蒸馏方法,以允许信息交流并鼓励两个分支机构之间的协议,以发现新类别,允许我们的模型享受全球和当地特征的好处。我们全面评估了我们在通用对象分类的公共基准上的方法,以及用于细粒度的视觉识别的更具挑战性的数据集,实现最先进的性能。
translated by 谷歌翻译
The dynamic expansion architecture is becoming popular in class incremental learning, mainly due to its advantages in alleviating catastrophic forgetting. However, task confusion is not well assessed within this framework, e.g., the discrepancy between classes of different tasks is not well learned (i.e., inter-task confusion, ITC), and certain priority is still given to the latest class batch (i.e., old-new confusion, ONC). We empirically validate the side effects of the two types of confusion. Meanwhile, a novel solution called Task Correlated Incremental Learning (TCIL) is proposed to encourage discriminative and fair feature utilization across tasks. TCIL performs a multi-level knowledge distillation to propagate knowledge learned from old tasks to the new one. It establishes information flow paths at both feature and logit levels, enabling the learning to be aware of old classes. Besides, attention mechanism and classifier re-scoring are applied to generate more fair classification scores. We conduct extensive experiments on CIFAR100 and ImageNet100 datasets. The results demonstrate that TCIL consistently achieves state-of-the-art accuracy. It mitigates both ITC and ONC, while showing advantages in battle with catastrophic forgetting even no rehearsal memory is reserved.
translated by 谷歌翻译
Can a text-to-image diffusion model be used as a training objective for adapting a GAN generator to another domain? In this paper, we show that the classifier-free guidance can be leveraged as a critic and enable generators to distill knowledge from large-scale text-to-image diffusion models. Generators can be efficiently shifted into new domains indicated by text prompts without access to groundtruth samples from target domains. We demonstrate the effectiveness and controllability of our method through extensive experiments. Although not trained to minimize CLIP loss, our model achieves equally high CLIP scores and significantly lower FID than prior work on short prompts, and outperforms the baseline qualitatively and quantitatively on long and complicated prompts. To our best knowledge, the proposed method is the first attempt at incorporating large-scale pre-trained diffusion models and distillation sampling for text-driven image generator domain adaptation and gives a quality previously beyond possible. Moreover, we extend our work to 3D-aware style-based generators and DreamBooth guidance.
translated by 谷歌翻译
近年来,压缩图像超分辨率已引起了极大的关注,其中图像被压缩伪像和低分辨率伪影降解。由于复杂的杂化扭曲变形,因此很难通过简单的超分辨率和压缩伪像消除掉的简单合作来恢复扭曲的图像。在本文中,我们向前迈出了一步,提出了层次的SWIN变压器(HST)网络,以恢复低分辨率压缩图像,该图像共同捕获分层特征表示并分别用SWIN Transformer增强每个尺度表示。此外,我们发现具有超分辨率(SR)任务的预处理对于压缩图像超分辨率至关重要。为了探索不同的SR预审查的影响,我们将常用的SR任务(例如,比科比奇和不同的实际超分辨率仿真)作为我们的预处理任务,并揭示了SR在压缩的图像超分辨率中起不可替代的作用。随着HST和预训练的合作,我们的HST在AIM 2022挑战中获得了低质量压缩图像超分辨率轨道的第五名,PSNR为23.51db。广泛的实验和消融研究已经验证了我们提出的方法的有效性。
translated by 谷歌翻译